Evolutionary Generalized Radial Basis Function neural networks for improving prediction accuracy in gene classification using feature selection
نویسندگان
چکیده
Radial Basis Function Neural Networks (RBFNNs) have been successfully employed in several function approximation and pattern recognition problems. The use of different RBFs in RBFNN has been reported in the literature and here the study centres on the use of the Generalized Radial Basis Function Neural Networks (GRBFNNs). An interesting property of the GRBF is that it can continuously and smoothly reproduce different RBFs by changing a real parameter . In addition, the mixed use of different RBF shapes in only one RBFNN is allowed. Generalized Radial Basis Function (GRBF) is based on Generalized Gaussian Distribution (GGD), which adds a shape parameter, , to standard Gaussian Distribution. Moreover, this paper describes a hybrid approach, Hybrid Algorithm (HA), which combines evolutionary and gradientbased learning methods to estimate the architecture, weights and node topology of GRBFNN classifiers. The feasibility and benefits of the approach are demonstrated by means of six gene microarray classification problems taken from bioinformatic and biomedical domains. Three filters were applied: Fast Correlation-Based Filter (FCBF), Best Incremental Ranked Subset (BIRS), and Best Agglomerative Ranked Subset (BARS); this was done in order to identify salient expression genes from among the thousands of genes in microarray data that can directly contribute to determining the class membership of each pattern. After different gene subsets were obtained, the proposed methodology was performed using the selected gene subsets as new input variables. The results confirm that the GRBFNN classifier leads to a promising improvement in accuracy.
منابع مشابه
Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملImproving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm
Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملEvolutionary q-Gaussian Radial Basis Functions for Improving Prediction Accuracy of Gene Classification Using Feature Selection
This paper proposes a Radial Basis Function Neural Network (RBFNN) which reproduces different Radial Basis Functions (RBFs) by means of a real parameter q, named q-Gaussian RBFNN. The architecture, weights and node topology are learnt through a Hybrid Algorithm (HA) with the iRprop+ algorithm as the local improvement procedure. In order to test its overall performance, an experimental study wit...
متن کاملSensitivity based Generalization Error for Supervised Learning Problem with Applications in Model Selection and Feature Selection
Generalization error model provides a theoretical support for a classifier's performance in terms of prediction accuracy. However, existing models give very loose error bounds. This explains why classification systems generally rely on experimental validation for their claims on prediction accuracy. In this talk we will revisit this problem and explore the idea of developing a new generalizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 12 شماره
صفحات -
تاریخ انتشار 2012